

University of California ~ Effort Reporting System
Customization Guide

Release 1
February 6, 2006

Application Technology Services
Information Resources & Communications
Office of the President

Contents
Introduction .. 1
Configuration File: ERSConfig.XML... 2
Customization / Branding / Skinning ... 5
Authentication.. 12
Authorization ... 13
Account Number (FAU) Display... 17
Relabeling Fields and Customizing Message Text.. 18
Document Change Log.. 19

Effort Reporting System-Customization Guide Page 1

Introduction

The Effort Reporting System was designed to be configurable and customizable to support the
specific needs of each installation. In preparing to customize the system, it is useful to review
the types of configuration and customization that might be needed for a particular installation.

Configuration
Configuration means changing system behavior by modifying one or more options that are
provided by the application configuration file. Configuration can be done by the installer or a
programmer after installation. For ERS, configuration is accomplished by editing settings in the
application configuration file ERSConfig.XML

Customization
Customization means changing the system “look and feel” by modifying the fonts, colors or
graphics used for the web application. This process is commonly known as “skinning”.
Customization may be done by a web designer or HTML programmer. This task requires
editing CSS files, possibly editing HTML or JSP files, creating new graphics and installing these
modified objects in the appropriate application folders.

Modification
Modification means changing the system behavior by modifying source code. This type of
customization will require Java programming skills and the changes are introduced by editing
source code, recompiling and redeploying the application in WAR format. In order to modify
the ERS source code, the installation must establish the required development environment
with all of the products described in the “ERS Software Specification” document.

Effort Reporting System-Customization Guide Page 2

Configuration File: ERSConfig.XML

The ERS configuration file contains parameters which control the behavior of many aspects of
the Effort Reporting System. It is a structured XML document that will allow the installer to set
up the Effort Reporting System to meet installation specific needs.

The root element of this document is the “Configuration” element. The “root” element
(Configuration) is only mentioned in the first entry.

Throughout this section, the element descriptions will use a “dotted” notation to refer to the
sub-elements. For example:

<GlobalItems><ApplicationBaseURL>XXX</ApplicationBaseUrl></GlobalItems>

will be described as: GlobalItems.ApplicationBaseURL
with a value of: XXX

Configuration Element Supplied Value
Description
Configuration url=http://www.ucop.edu

<string> the URL of the campus

 campusName=UC Office of the President

<string> text name of the campus

GlobalItems.ApplicationBaseURL http://localhost:8080/EffortReporting

<string> URL of index.jsp for the application

GlobalItems.TrainingBaseURL http://localhost:8080/EffortReporting/Trainin
g

<string> URL of Training website for linking from online help

GlobalItems.SupportEmail.Name Effort Reporting System

<string> text Name of the Support Email User

GlobalItems.SupportEmail.Address ersadmin@ucop.edu

<string> Email Address of the Support Email User

AccessControl.Authentication.internal-authentication true

whether the authentication method used is internal (true) or external (false)

AccessControl.Authorization.internal-authorization true

whether the authorization method used is internal (true) or external (false)

AccessControl.Authorization.authorization-package edu.ucop.ers.access

<string> package name containing authorization classes

AccessControl.Authorization.authorization-class UCOPAuthorizer

<string> class that will check requests to perform functions

AccessControl.Authorization.authorizer-mgr-package edu.ucop.ers.access

<string> package name containing the authorization classes

AccessControl.Authorization.authorizer-mgr-class UCOPAuthorizerManagerImpl

<string> name of the class that implements the IAuthorizer Interface to determine whether a logged-
in user may perform a given function on any one of a list of specific resources

Effort Reporting System-Customization Guide Page 3

Configuration Element Supplied Value
Description
AccessControl.Authorization.my-report-authorizer-
package

edu.ucop.ers.access

<string> name of the package containing the authorization classes

AccessControl.Authorization.my-report-authorizer-
class

UCOPMyReportAuthorizerImpl

<string> name of the class of the AuthorizerManager that takes care of reports designated as My
Reports
AccessControl.Authorization.my-project-authorizer-
package

edu.ucop.ers.access

<string> package name containing the authorization classes

AccessControl.Authorization.my-project-authorizer-
class

UCOPMyProjectAuthorizerImpl

<string> name of the class of the AuthorizerManager that takes care of reports designated My
Projects.
AccessControl.Authorization.my-roles-checker-package edu.ucop.ers.access

<string> package name containing the authorization classes

AccessControl.Authorization.my-roles-checker-class UCOPMyRolesCheckerImpl

<string> name of the class of the AuthorizerManager that determines which role(s) a user possesses.

AccessControl.Authorization.uc-builder-package edu.ucop.ers.access

<string> package name containing the authentication classes

AccessControl.Authorization.uc-builder-class UCOPUserContextBuilderImplementation

<string> name of the class that builds the User Context consistent with the IUserContext Interface.
Whether you use the UCOP Authorization or not, your implementation must satisfy IUserContext. If
you use UCOP authorization, your implementation must additionally satisfy IUCOPUserContext.
CostSharing.DrillDownActive False

Controls whether cost sharing numbers on an effort report will (true) or will not (false) provide an
HTML link to an external cost sharing system
CostSharing.DrillDownURL http://www.ucop.edu/costsharing

<string> the URL that will be used to construct a link to the external cost sharing system. This
link will be passed two parameters, the employee ID for the effort report and the project ID that is
selected via the HTML link.
Notification.MailServer smtp.ucop.edu

<string> The hostname of an SMTP server that will accept mail from the application server.

Notification.MailAgentHeader Windows Eudora Version 6.1.2.0

<string> An RFC 2821 Mail User Agent acceptable to the SMTP server from above.

Notification.AdministratorName Effort Reporting System

<string> The text Name portion of the email address from which notifications are sent (From:)

Notification.AdministratorEmail ersadmin@ucop.edu

<string> The actual email Address of the email User from which notifications are sent. Insure that
intended recipients do not consider this a SPAM from address.
Notification.Reminder.RDUE 30

<number> This parameter defines the number of days prior to the certification due date that a
reminder notification will be sent to the ER coordinator. A value of -1 will prevent reminder
notifications of this type from being sent.
Notification.Reminder.CDUE 15

<number> This parameter defines the number of days prior to the certification due date that a
reminder notification will be sent to the PI. A value of -1 will prevent reminder notifications of
this type from being sent.
Interface.Filepath Z:\Interfaces\Test Files\

<string> The path to campus interface files, from the perspective of the application server.

Effort Reporting System-Customization Guide Page 4

Configuration Element Supplied Value
Description
DatabaseConfiguration.PropFiles.PropFile hibernate.base.properties

<string> Common Hibernate configuration properties used by all databases.

DatabaseConfiguration.PropFiles.PropFile hibernate.tst01.properties

<string> Specific Hibernate configuration properties used for a particular database and database
management system. Note that the PropFiles items are read hierarchically.
DatabaseConfiguration.MapFile mappings.xml

<string> A list (in xml format) of Hibernate class mapping files (HBM xml). Shared by all DBMS and
databases. A copy may be used to test a new mapping.
Utility.fau-formatter.package edu.ucop.ers.utility

<string> name of the package that contains the FAU formatter class

Utility.fau-formatter.class FauFormatterAdapter

<string> name of the class used to format the FAU in a way that makes sense to a particular campus.

Branding.BrandDelimiter /campus/brand/

<string> The string that will be replaced in Tiles definitions with the CampusBrand below.

Branding.CampusBrand /campus/generic/

<string> The replacement values to be used for branding the web pages with the local campus page
elements.
Constants.Classname edu.ucop.ers.ERSConstants

<string> The name of the class that will be used to load constants into the application context
during application server initialization for the web application.
Externalized.Strings.FileName ExternalizedStrings.xml

<string> Identifies an XML file that contains customizable string literals for various parts of the
web application.
Options.allow-save-out-of-balance False

Web application option that controls whether an out of balance effort report can (true) or cannot
(false) be saved to the database.

Effort Reporting System-Customization Guide Page 5

Customization / Branding / Skinning

Overview
The ERS application was designed so that the look of the application could quickly and easily
match the established web style of each deploying campus.

There are basically four things that can be customized, campus headers and footers, CSS,
graphics, and HTML.

Headers and Footers
Campus specific headers and footers are defined in files separately from the main
content of the ERS application. This allows you to completely replace those files with
our own files and have almost no impact on the structure of the application.

CSS
CSS is used to define the look, and to a certain extent the layout, of ERS. With a little
ingenuity you could even design your own tabs and buttons.

The cascading style sheets are structured so that you can override the default styles for
the application in your own CSS file and never touch the default styles. This makes it
easy to maintain your campus styles and see what new styles you need to update when
the application is updated.

Graphics
Graphics used in ERS are stored in campus specific folders. This will allow you to
maintain your own folder and see what changes are made to the default (generic) folder
when the application is updated.

Note: since dimensions are declared for graphics in the HTML source, if you diverge from the
default size of an image, you will need to modify the HTML source to correctly render the image.
Specifying image dimensions allows the browser to more quickly render an HTML page,
although this improved performance may be negligible with fast processors and broadband
network connections.

HTML
The actual HTML structure of the application should not need to be modified in order to
brand the application for your campus. However, if you need to change the structure of
the pages, for the most part you can. It is not encouraged for reasons that we will discuss
later, along with giving you some strategies to do so effectively and safely.

Tools
You may find that the following tools will help you as you customize ERS for your own
campus:

• Mozilla’s Firefox browser

Effort Reporting System-Customization Guide Page 6

Firefox extensions:
o View Formatted Source Code

allows you to view the CSS applied to a specific page element.
o IE View

allows you to quickly view the page in IE.
o Web Developer

does so much, but specifically has shortcuts to viewing CSS and JavaScript, disabling styles,
clearing caches. All around great tool!

• Microsoft’s Internet Explorer browser

Getting Started: Setting up a Campus folder
In order to make ERS easy to customize and easy to upgrade later, we have engineered the
application to use a special “campus” folder that will contain your headers and footers, your
style overrides, and your graphic files.

This allows you to easily switch back and forth between your instance of the application and the
generic instance. This is useful when debugging your campus customization and is also very
useful when upgrading ERS with a new version, since you can use the changes to the generic
folder as a template for the changes that you need to make to your own folder.

Note: There isn’t an override scheme for applications HTML files. HTML changes are done right in the
source. For that reason, changing HTML is much more difficult to maintain when a new version of the
application comes along.

We’ve also provided you with a sample campus folder called ucop. The ucop folder was used
during development to test our customization scheme and may not be completely up-to-date.
However, we felt that it does provide and interesting example of a campus customization.

Setting up a new campus folder
Inside the /campus directory, you will find two folders, generic, and ucop.
Duplicate the generic directory.
Rename the duplicate directory to some useful name such as the name or initials for your
campus.
Once you set up the new directory, any changes to headers, footers, CSS or graphics should be
done in this folder.

Modify settings
Once you set up the new directory, you need to make one small modification to
ERSConfig.xml for the application to start using your campus folder. ERSConfig.xml can be
found at /EffortReporting/src/ERSConfig.xml.

In ERSConfig.xml replace the word generic in the following XML with the name that you gave
to your campus directory. (Do not modify the BrandDelimiter line.)

<Branding>

Effort Reporting System-Customization Guide Page 7

 <BrandDelimiter>/campus/brand/</BrandDelimiter>
 <CampusBrand>/campus/generic/</CampusBrand>
</Branding>

Restart your server and you’re ready to develop your own customized ERS application.

A Customization Strategy

We suggest that you customize your instance of ERS in the following order: headers and
footers, css, graphics, and finally, and only if absolutely necessary, HTML.

Note: While it may be tempting to just make changes to the CSS and .jspf files outside of your campus
folder, doing so will make it more difficult to keep your installation up-to-date.

Headers and Footers
Whether you’re making minor modifications to the header and footer provided or you’re
completely replacing the provided header and footer with your own, the process is pretty much
the same. Simply edit or replace the content of the current header and footer files.

Self-contained headers and footers or wrapper
Your headers and footers can be self-contained or can act as a wrapper for the rest of the
application. You must decide whether you want to have your headers and footers to be self-
contained or have them wrap the main content.

Self-contained headers
With self-contained headers and footers, the tags for each section
are complete; the header or footer could stand on its own and be
valid XHTML. The header section, footer section, and main
section each have their own styles defining their width and
position on the page. If done correctly, they’ll all line up and look
right.

Wrapping headers and footers
Wrapping headers and footers give you slightly more
control over the layout of the page by using the header
section and the footer section to wrap the main section that
contains the application.
The header initiates the wrapper div and the footer closes
it.
Widths and positioning on the page is controlled by the
wrapper – the enclosed elements are contained and
constrained by the wrapper.

Note: According the Struts documentation, you’re supposed to close all tags within a given file, so we’re
officially cheating when we do this. But if done correctly it doesn’t break anything and it buys us a lot of
control.

<div id=”header”>
</div>

<div id=”main”>

</div>

<div id=”footer”>
</div>

Effort Reporting System-Customization Guide Page 8

Liquid vs. Fixed Width Layout
While not strictly a header and footer issue, this is a good place to talk about liquid verses fixed-
width layout. Liquid layouts resize as the user resizes the browser. Fixed-width layout, as the
name implies, have a fixed width. Both styles have their advantages and ERS supports both.
Which one you choose will depend mostly on preference or precedence.

The generic layout is fixed width. To change your layout to liquid, you’ll want to change the
width attribute for the wrapper element to a percentage instead of a pixel width.

Exercise
If you’re not sure what we’re talking about here, just try this simple exercise:
1. Start up your server and open your instance of the ERS in a browser.
2. Sign-in to the Report List view.
3. In your editor, open the file styles.css in your campus folder, and change the line

width: 740px; to width: 97%;, Save and refresh the page.
4. Now, try resizing the browser, and notice that the content of the page resizes with

the browser.

Customizing the default header and footer files
You can modify the header and footer files pretty much anyway you like as long as all of your
changes are self-contained to the header and footer files.

If you’re doing a very light customization, you may want to just edit the header and footer files
that are provided; change the colors, add your own logo, etc. If you would like to add links to
the header file to other online campus resources, there are already some commented out links in
the default header file.

Styles for the header and footer files
The styles for the header and footer provided can be found in the styles.css file in your campus
folder. The styles in this file define only the header and footer and the wrapper div for the
application.

To link to a different style sheet, such as a style sheet already in use at your campus, modify the
stylesheet reference link in campus/<yourcampus>/head_tags.jspf.

<link href='<html:rewrite page="/${campusBrand}styles/campus_styles.css" />'
rel="stylesheet" type="text/css" media="all" />

Effort Reporting System-Customization Guide Page 9

CSS
This guide assumes that you already know a fair amount about CSS; how it works and why it
good. If you need a refresher course on CSS, you might start with:
http://www.mako4css.com/Basics.htm, or http://www.cssbasics.com/.

ERS contains some very complex styling. We’re not claiming that it’s the “be all and end all” of
CSS design—there were a lot of changes and modifications that crept into the styles that could
have been more artfully done. However, we’ve attempted to follow a best practices approach to
CSS while also making it easy for each campus to have a high-level of control when
customizing the look of ERS.

The tools mentioned above, especially the Firefox View Rendered Source extension, will help
you identify how the styles are applied to each element.

Note: As you make changes to the CSS, make sure to check your changes in the live application with both
IE and Firefox.

CSS Structure: How to override our styles with your styles
In CSS, styles cascade from enclosing element to enclosed element. However, you can also think
of styles as cascading through the various CSS documents and style declarations that are
applied to the page. Just as you can declare a style to a parent element and then override that
style with a style attached to a child element, you can also declare a style for an element in one
style sheet and then override that style in another style sheet, on the actual page or element.

This is the hierarchy of the css files attached to every page in ERS.

<your campus CSS file for your chrome>
ers_styles.css :the bulk of the ERS CSS is here

campus_styles.css :but you’ll modify it here

Editing CSS
Approach modifying the styles from the outside in, starting with enclosing elements (parents)
and then modifying the styles attached to child elements, starting with the body and working
your way inward to the smaller more localized elements on the page.

Another reason to start with enclosing objects is that an element on a page may have the same
class or id as a similar element on a different page. However, because of styles applied to the
enclosing element the styles applied any given element may look and behave quite differently
from page to page.

The best way to learn is go in and make changes. Go ahead, be bold! Make a change and then
quickly take a stroll through the app to see if your change has had the effect that you expected.
You can always rollback to a previously saved version.

Effort Reporting System-Customization Guide Page 10

Tricks

Image references in the CSS files
In order to have image references in the CSS reference image files inside your campus folder, all
image references are declared in the campus override CSS file in your campus folder, and not in
the main CSS file. There is a comment calling this out wherever it happens.

IE Hacks
Not all CSS standards are implemented exactly the same way from browser to browser. Luckily,
with most modern browsers, CSS Level 2 for XHTML documents is implemented pretty
consistently. However, there are a couple of styles that are modified to support quirks in
Microsoft’s Internet Explorer.

There are a number of techniques to apply different styles for different browsers. Each
technique has its advantages and disadvantages, and its supporters and detractors debating ad
nauseam in the blogsphere. We have chosen to hide styles from IE using a child selector, “>”.

Example
/* Text Buttons */
span.textbutton {
 position: relative;
 top: -2px;
 border: black 1px solid;
 padding: 0;
 margin: 0;
}

/* selector hack to hide from IE */
html>body span.textbutton {
 padding: 1px 0px 2px;
 top: 0px;
 font-size: 12px;
}

The child selector is part of the W3 CSS2 specification. Conveniently, IE does not support the
child selector and thusly ignores any CSS statements defined in this way.

There is a danger that some day Microsoft will release a version of IE that will support this part
of the W3 specification. However, it is hoped that they will clean up their CSS bugs at the same
time.

A few other CSS files
There are a couple of other CSS files that you will need to know about.

Printing styles are defined in /styles/ers_print.css. You can also override printing
styles in your campus_styles.css file using the @media print declaration.

The styles for the tooltip style popups are declared in /styles/nicetitles.css.

Effort Reporting System-Customization Guide Page 11

Graphics

Your graphics in your folder
All the graphics files for ERS are in the images folder inside the campus folder that you set up.
You can easily change the look of your application by replacing or modifying these images.

Sizes
However, don’t change the size of a particular graphic element unless you have to. Most of the
images in the source are specified with height and width attributes to increase performance. If
you change the size of an image, you will need to change it’s size in the source.

HTML
Changing the HTML really should be done only in the last resort. Changing the HTML in the
source files must be done with great care since it may change the behavior of the page. And,
changes to source will need to be resolved each time the application is updated.

Hide don’t delete fields
When changing HTML on pages that use forms, do not delete any fields, as these fields are
referenced by the application both in the Java and, in many cases, by the JavaScripts on the
page. Missing fields will result in errors. To remove a field, change the type of the field to
hidden. In most cases this is done by changing the struts tag from html:text to
html:hidden. You may also need to attach a default value to the hidden field as well in order
to pass the right value to the application.

Comment, Comment, Comment
Don’t forget to comment your changes to the source. Use a standard format and a key word in
your comments so you can easily search for them when doing updates.

Example:
<%-- CHANGE 2/17/06 Eli: Changed case of field value to upper --%>

Test

I guess it goes without saying that any change that you make, you should test thoroughly. Make
sure to test in all the browsers that you plan to support.

Effort Reporting System-Customization Guide Page 12

Authentication

Authentication in ERS is the process of making the decision whether a user can access the web
application.

ERS supports two modes of authentication, Internal and External. As released, ERS is
configured to use internal authentication.

Internal Authentication
Internal authentication uses an application login page, and compares the entered user ID and
password against an application table, ERSUser. The user interface supports user-requested
password resets via email, and the System Administration module also allows a password to be
reset by a central administrator.

After the login page validates the user’s password, it constructs an object known as a
UserContext. This object contains information about the logged in user, such as their user ID,
full name, email address and employee ID among other items. This object is key to the
operation of the web application and is required to be present for all application users.

External Authentication

An external authentication mechanism may be used for ERS. The login process would
be managed by another application which would have responsibility for user ID and
password verification.

Using an external authentication mechanism requires that the authenticator fulfill
several responsibilities prior to attempting to access ERS on behalf of their user. These
steps are:

1. construct a UserContext object
2. populate it’s fields with the user’s attributes
3. place the object into the session object field USER_CONTEXT
4. transfer control to the ERS main entry point, EnterERS.

If the UserContext is null or otherwise invalid, the ERS entry point EnterERS will exit without
allowing access to the application.

Effort Reporting System-Customization Guide Page 13

Authorization

Authorization in ERS is the process of making decisions about a user performing an action on a
specific application resource, and in some cases, obtaining email and full name information
about the user.

The ERS authorization scheme consists of several interfaces that capture the types of decisions
the system must make.

The interfaces are:

 IAuthorizer
 IMyProjectsAuthorizer
 IMyReportsAuthorizer
 IMyRolesChecker
 IEmployeeInfo

ERS provides internal implementations of all these interfaces. Campuses can choose to rely
entirely upon the ERS internal system, they can completely rely on an external system, or they
can choose to use a mix of both internal and external implementations.

There is support for implicit permissions, and exclusion lists from the implicit permissions. The
implicit permissions are termed "My Projects" and "My Reports". The "My Projects" implicit
permission means a principal investigator has permission to view, edit, certify and view payroll
data for any report that contains at least one of his/her projects. The "My Report" permission
means any user with a report in the system can view, edit, certify, and view payroll data for
their own reports. Users who would otherwise have these permissions can be explicitly
excluded from them. Furthermore, users can be excluded from certifying their own reports,
while still retaining the other permissions. Internally this is done by maintain lists that are
managed through the System Administration module.

Effort Reporting System-Customization Guide Page 14

Interfaces

IAuthorizer

The core interface is IAuthorizer. A campus that implements this interface can support all
authorization requirements of the application.

Every ERS application instance must provide an implementation of this interface. The
implementing class must be specified in ERSConfig.xml with the following items:

AccessControl.Authorization.authorization-package
AccessControl.Authorization.authorization-class

ERS provides a concrete implementation of this interface for internal authorization:

edu.ucop.ers.access.UCOPAuthorizerImpl

IMyProjectsAuthorizer
To enforce the "My Projects" business rule (i.e. any principal investigator can perform any intent
on any report that contains at least one of his/her projects unless explicitly excluded otherwise)
when performing an authorization check, ERS makes a call on this interface.

Every ERS installation will have an implementing class, either a custom-build class that
connects to the campus-specific authorization application that can return a decision based on
the provided parameters, or one of the two ERS-provided implementations. The implementing
class must be specified in ERSConfig.xml with the following items:

AccessControl.Authorization.my-project-authorizer-package
AccessControl.Authorization.my-project-authorizer-class

Since this permission can be explicitly denied to specific users, the interface call relies on
another interface, IMyRolesChecker, to enable that business rule.

ERS provides a trivial implementation of this interface,

edu.ucop.ers.access.SimpleMyProjectsAuthorizerAdapter

for external implementations that wish to use IAuthorizer to handle the self-permission role.

ERS also provide the class

edu.ucop.ers.access.UCOPMyProjectAuthorizerImpl

which is a full implementation of the My Projects interface, supported internally by a persisted
list of excluded users. This list is populated via the System Administration module.

Effort Reporting System-Customization Guide Page 15

IMyReportAuthorizer
To enforce the "My Reports" business rule (i.e. any ERS user with a generated report can
perform any intent on that report unless explicitly excluded otherwise) when performing an
authorization check, ERS makes a call on this interface.

Every ERS installation will have an implementing class, either a custom-built class that connects
to the campus-specific authorization application that can return a decision based on the
provided parameters, or one of the two ERS-provided implementations. The implementing
class must be specified in ERSConfig.xml with the following items:

AccessControl.Authorization.my-reports-authorizer-package
AccessControl.Authorization.my-reports-authorizer-class

Since this permission can be explicitly denied to specific users, the interface call relies on
another interface, IMyRolesChecker, to enable that business rule.

ERS provides a trivial implementation of this interface,

edu.ucop.ers.access.SimpleMyReportsAuthorizerAdapter

for external implementations that wish to bypass the implicit my reports permission and pass
through to the IAuthorizer call.

ERS also provides the class

edu.ucop.ers.access.UCOPMyReportAuthorizerImpl

which is a full implementation of the my report interface, supported internally by a persisted
list of excluded users.

IMyRolesChecker
This interface works in conjunction with the IMyProjectsAuthorizer and IMyReportsAuthorizer
interfaces to enforce the self-permission business rules described above.

As in the My Reports/My Projects interfaces, ERS provides trivial adapter implementations that
allow campus customizations to just use the authorization call in the IAuthorizer.

The implementing class must be specified in ERSConfig.xml with the following items:

AccessControl.Authorization.my-roles-checker-package
AccessControl.Authorization.my-roles-checker-class

IEmployeeInfo
This is a simple struct-like type that associates an employee’s list of email addresses with a
formatted version of the employee’s name. Since it is only ever used in the context of a return
value from one of two method calls defined in IAuthorizer, there is no need for it to be
described by the configuration scheme.

Effort Reporting System-Customization Guide Page 16

Levels of Customization

There is a true/false flag configuration item in ERSConfig.xml that indicates whether the
application should be run under internal authentication or external authentication:

 AccessControl.Authentication.internal-authentication

External

IAuthorizer/IEmployeeInfo
If a campus's authorization system can provide support for the all authorization decisions the
system requires, including the "My Projects" and "My Reports" business rules, then its
customization will consist solely of implementing the IAuthorizer and IEmployeeInfo
interfaces. As part of this customization, the campus will specify in ERSConfig.xml that the
system should use the trivial bypass implementations of the IMyReportsAuthorizer,
IMyProjectsAuthorizer, and IMyRolesChecker interfaces:

Interface Trivial Adapter
edu.ucop.ers.access.IMyProjectsAuthorizer edu.ucop.ers.access.SimpleMyProjectsAuthorizerAdapter
edu.ucop.ers.access.IMyReportsAuthorizer edu.ucop.ers.access.SimpleMyReportsAuthorizerAdapter
edu.ucop.ers.access.IMyRolesChecker edu.ucop.ers.access.SimpleMyRolesCheckerAdapter

This approach will require the implementation of the IEmployeeInfo interface, but this is
expected to be trivial.

Full External Implementation
A campus can also choose to use their external system to implement the IMyReportsAuthorizer,
IMyProjectsAuthorizer, and IMyRolesChecker interfaces if it makes sense when analyzing the
resources of the campus’s own authentication system.

Mixed Implementation
If a campus's authorization system cannot provide support for the "My Projects" and/or "My
Reports" business rules, then it can customize the authorization by implementing IAuthorizer
while relying on the internal implementations of the self-role business rule(s) as needed. This
approach then requires the campus to use the administration user interface to populate the
exclusion tables with the user that should be excluded from the self-roles as needed.

Interface Trivial Adapter
edu.ucop.ers.access.IMyProjectsAuthorizer edu.ucop.ers.access.UCOPMyProjectsAuthorizerImpl
edu.ucop.ers.access.IMyReportsAuthorizer edu.ucop.ers.access.UCOPMyReportsAuthorizerImpl

Internal Implementation
If a campus lacks an authorization system or it cannot support the decisions represented by the
IAuthorizer interface, then it can rely on the internal ERS authorization system. This requires
using the administration user interface to assign roles, permissions, etc to users, and to populate
the exclusion tables.

Effort Reporting System-Customization Guide Page 17

Account Number (FAU) Display

ERS provides a feature to allow customization of the FAU presentation when this data element
is displayed in the web application. Although the FAU has a common definition of 30
characters, across installations the values in this field can vary in their format and
interpretation.

ERS provides an interface called IFauFormatter for the purpose of formatting the FAU for
display. A trivial implementation of this interface is provided in class FauFormatterAdapter.
This implementation may be modified to meet installation-specific requirements.

If a customized version of the FauFormatterAdapter class is used, it must be identified in the
ERS configuration file, ERSConfig.XML

Effort Reporting System-Customization Guide Page 18

Relabeling Fields and Customizing Message Text

ExternalizedStrings.XML
Several field labels in the web application are customizable to allow installations to choose
different wording to refer to various elements of the effort report. This set of labels can be
customized by editing the configuration file ExternalizedStrings.XML.

The supported customizable field labels and their default values are:

Field Name Default Value
ProjectName Sponsored Project Name
ProjectNameAlt Grant Title
ProjectId Sponsored Project ID
ProjectIdAlt Alternate Project ID
SponsoredTitleLabel Sponsored Projects
SponsoredTotalLabel Total Sponsored Projects
SponsoredNoteLabel requiring certification
OtherTotalLabel Total Other Effort
OtherNoteLabel not requiring certification
GrandTotalLabel Grand Total
NegCSLabel Cost Sharing Offset Against Other Sponsored Projects

ApplicationResources.Properties
All strings in the application, including field labels, message texts, prompts, etc., are defined in
the file ApplicationResources.Properties which is located in the source package
edu.ucop.ers.struts. Further customization of the application can be accomplished by
editing this file with a normal text editor.

Note that changes to either of these files will require a restart of the application server to reload
the new file contents.

Effort Reporting System-Customization Guide Page 19

Document Change Log

Date Build # Changes
2/15/06 Release 0 Initial draft for technical review
2/17/06 Release 1 Finalization of the customization section

